Splicing promotes rapid and efficient mRNA export in mammalian cells.

نویسندگان

  • Patricia Valencia
  • Anusha P Dias
  • Robin Reed
چکیده

The numerous steps in protein gene expression are extensively coupled to one another through complex networks of physical and functional interactions. Indeed, >25 coupled reactions, often reciprocal, have been documented among such steps as transcription, capping, splicing, and polyadenylation. Coupling is usually not essential for gene expression, but instead enhances the rate and/or efficiency of reactions and, physiologically, may serve to increase the fidelity of gene expression. Despite numerous examples of coupling in gene expression, whether splicing enhances mRNA export still remains controversial. Although splicing was originally reported to promote export in both mammalian cells and Xenopus oocytes, it was subsequently concluded that this was not the case. These newer conclusions were surprising in light of the observations that the mRNA export machinery colocalizes with splicing factors in the nucleus and that splicing promotes recruitment of the export machinery to mRNA. We therefore reexamined the relationship between splicing and mRNA export in mammalian cells by using FISH, in combination with either transfection or nuclear microinjection of plasmid DNA. Together, these analyses indicate that both the kinetics and efficiency of mRNA export are enhanced 6- to 10-fold (depending on the construct) for spliced mRNAs relative to their cDNA counterparts. We conclude that splicing promotes mRNA export in mammalian cells and that the functional coupling between splicing and mRNA export is a conserved and general feature of gene expression in higher eukaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of mRNA Nuclear Export Kinetics in Mammalian Cells by Microinjection

In eukaryotes, messenger RNA (mRNA) is transcribed in the nucleus and must be exported into the cytoplasm to access the translation machinery. Although the nuclear export of mRNA has been studied extensively in Xenopus oocytes and genetically tractable organisms such as yeast and the Drosophila derived S2 cell line, few studies had been conducted in mammalian cells. Furthermore the kinetics of ...

متن کامل

mRNA Export from Mammalian Cell Nuclei Is Dependent on GANP

Bulk nuclear export of messenger ribonucleoproteins (mRNPs) through nuclear pore complexes (NPCs) is mediated by NXF1. It binds mRNPs through adaptor proteins such as ALY and SR splicing factors and mediates translocation through the central NPC transport channel via transient interactions with FG nucleoporins. Here, we show that mammalian cells require GANP (germinal center-associated nuclear ...

متن کامل

Splicing is required for rapid and efficient mRNA export in metazoans.

Pre-mRNA splicing is among the last known nuclear events before export of mature mRNA to the cytoplasm. At present, it is not known whether splicing and mRNA export are biochemically coupled processes. In this study, we have injected pre-mRNAs containing a single intron or the same mRNAs lacking an intron (Deltai-mRNAs) into Xenopus oocyte nuclei. We find that the spliced mRNAs are exported muc...

متن کامل

Growth-regulated expression and G0-specific turnover of the mRNA that encodes URH49, a mammalian DExH/D box protein that is highly related to the mRNA export protein UAP56.

URH49 is a mammalian protein that is 90% identical to the DExH/D box protein UAP56, an RNA helicase that is important for splicing and nuclear export of mRNA. Although Saccharomyces cerevisiae and Drosophila express only a single protein corresponding to UAP56, mRNAs encoding URH49 and UAP56 are both expressed in human and mouse cells. Both proteins interact with the mRNA export factor Aly and ...

متن کامل

Splicing promotes the nuclear export of β-globin mRNA by overcoming nuclear retention elements.

Most current models of mRNA nuclear export in vertebrate cells assume that an mRNA must have specialized signals in order to be exported from the nucleus. Under such a scenario, mRNAs that lack these specialized signals would be shunted into a default pathway where they are retained in the nucleus and eventually degraded. These ideas were based on the selective use of model mRNA reporters. For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 9  شماره 

صفحات  -

تاریخ انتشار 2008